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Brownian Motion Near an Absorbing Sphere 
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The spherically symmetric solution of the Fokker-Planck equation with 
absorbing boundary is given in terms of a solution of an equivalent integral 
equation whose explicit form is found. 
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1. I N T R O D U C T I O N  

In this paper we shall consider the problem of determining the distribution 
function for a Brownian particle in the presence of an absorbing sphere. 
The problem was first raised some time ago by Wang and Uhlenbeck, ~l~ 
but until now only the one-dimensional case has been solved. (2'3~ The 
three-dimensional problem, as a long-standing and well-defined one in 
statistical mechanics, has its own interest, but there is also a practical 
interest through its relationship with the theory of reaction rates. (4-5~ 

The main object of study is the spherically symmetric distribution 
function that satisfies the equation 

L f ( r , v ) = ( v . V , ) f ( r , v ) - V v ( v . f ( r , v ) ) - A v f ( r , v ) = O  (1.1) 

r e; R3\S, v ~ R 3 

and the boundary conditions (BC) 

f ( a , V ,  lz)=O for /~>0,  v =  Iv[ s ~ +  (l.2a) 

f ( r , v )=- f ( r , v , p ) r - -7 -S -~  g(r,v,  ll) in an L2-sense (1.2b) 

Universit6 Paris VII, UA 212, Math6matiques, 75251 Paris Cedex 05, France. 
2 Permanent address: Central Institute of Physics, P.O. Box MG6, Bucharest, Romania. 

729 

0022-4715/91/0200-0729506.50/0 a) 1991 Plenum Publishing Corporation 



730 Boutet de MonveI-Berthier and Dita 

Here r =  Ir[, S =  {rlr2~<a 2 } is the sphere of radius a, p = c o s  (2, (2 being 
the angle between the vectors r and v, and g(r, v, ~) is a diffusion solution 
of Eq. (1.1). A diffusion solution is a solution of the form Pl(r) f:(v)+ 
Pz(r)f2(v), where PI and Pz are polynomials in the variable r. 

Because of the spherical symmetry the distribution function f ( r ,  v )=  
f (r ,  v, #) depends only on three variables r, v, g. Until now no explicit 
analytic solution of the above problem has been found. However, many 
different numerical approaches have been used for solving the problem. ~6 '~ 
In all of them a problem arises: the BC (l.2a) cannot be correctly satisfied. 

The aim of this paper is to transform the boundary value problem 
(1.1)-(1.2) into an integral equation of Fredholm type. The method makes 
explicit use of the fundamental solution of Eq. (1.1). We want to point out 
here that most of our results are at a purely formal level. 

We want to point out also that our method is rather general and can 
be applied to boundary value problems of the form 

~32f ~3f Lf = ~ no(x, y ) ~ ( x ,  y)+ ~ ai(x, y)-~yi(X, y) 
i , . j = l  i= I 

Of (x, y)= 0 + a(x, .v).l'(x, y) + hi(x, y) 
i - - I  

+ appropriate boundary conditions. 

Here x = (x~ ..... x,,), y = (Yl ..... y,),  m ~n ,  and the matrix (a~) is supposed 
to be strictly positive. These conditions are the necessary conditions for the 
existence of the fundamental solution. See refs. 12 and 13. 

In order to solve the problem (1.1)-(1.2a) it is necessary to solve first 
another problem, namely that with the following boundary conditions 
(SC): 

f(a,v,l~)=tp(v,g),  g~ (0, 1), v e R +  (t.2c) 

Afterward by an elementary trick we obtain also the solution of the 
boundary value problem ( 1.1 )-(1.2a). 

The paper is organized as follows. In Section 2 we find the fundamen- 
tal solution of Eq. (1.1) and in Section 3 we use it to transform the problem 
(1.1)-(1.2) into an integral equation. Section 4 presents our conclusions. 

. F U N D A M E N T A L  S O L U T I O N  

The fundamental solution of our problem satisfies the equation 

L*G = ( - v - V ,  + v. V v - d , )  G(r, v, p, co)= 6 ( r -  p) 6 ( v -  m) (2.1) 
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Looking at (2.1), it seems very difficult to solve such an equation. Instead 
of (2.1) we shall consider the time-dependent equation 

t + L*r = 6(0 6(r - p) 6(v - co) (2.1a) 

whose solution can be obtained easily. By making the change of variables 

u = v e - ' ,  p = r + v  

we get for the left hand side of (2.1a) 

~f L . f  =~t_e-Zt3uf _2e-tVuVpf _Apf  = 0 5 + 

The fundamental solution of the last equation is known ~'~4~ and as a 
consequence the solution of Eq. (2.ia) is given by 

~(t,r,v,p, co)=(8rt3zl3/2)-lexp[-E(t,r,v,p,~)] for t~>0 

= 0  for t < 0  

where 

! 
E(t,r,v,p,~)=~-~[(2t(ve , ~ ) 2 _ 4 ( 1 _ e  ')(ve ' - ~ o ) ( r + v - p - ~ ) )  

+ (1 - e2')(r + v -- p -- o~) 23 

and 

It is easily seen that 

and 

3=2t( l_e2 , )_4( l_e  ,)2 

zl = 2 t + O ( l )  as t ~  

14 
3=-~+0(t% as t-- .0 

t~ ( r + v + t ~ - P ) 2 + O ( t  2) 
E(t, r, v, p, ~)  =-~- + 4t 

E(t, r, v, p, (o)=3 (P t ; ) 2  + O(t -2) 

a s  I --~ oO 

(2.2) 

as t ~ 0  
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These properties show that the time dependence of the function ~b is such 
that the integral 

G(r, v, p, o~)ft~ ~ ( t , r , v , p ,  t o ) d t  (2.3) 

does exist, and since we know that ~b satisfies Eq. (2.1a) it follows that (2.3) 
gives the fundamental solution of the time-independent Eq. (2.1). Because 
we are interested in the spherically symmetric case, we shall write 

G(r, v, p, ( o ) - - G ( r ,  v, p, m, ~, ~p, '8, O, I2, ~) 

where (v, ~, ~p) denote the spherical coordinates of v, (p, [t, 0) those of p, t~ 
is pointing out in the positive direction of the z axis of the rectangular 
system, and (r, f2, ~,) are the spherical coordinates of r, where now the z 
axis is taken along the direction of v. This means that the scalar products 
entering (2.3) have the following form: 

r �9 v : rv cos I2 

p- r = pr[sin ~ sin '8 cos I2 cos(0 - ~p) + sin '8 sin I2 cos 7 sin(0 - ~p) 

- sin ,8 sin I2 sin ~ cos ~ cos(0 - Cp) + cos ~ cos '8 cos O 

+ sin ~ sin ~ sin f2 cos '8] 

etc. 

3. INTEGRAL EQUATION 

We shall denote by D the domain 

D =  {r, v l r~  R3\S, v~ R 3 } 

where S =  {rl r2 ~<a 2 } is the sphere of radius a centered at the origin of the 
system of coordinates. 

Let f ( r ,  v, # )  denote the spherically symmetric solution of Eq. (1.I) 
with the boundary conditions (BC). Now we integrate the equation 

G(r, v, p, o). ~, q), '8, O, 1"2, y) L f ( r ,  v, # ) = 0  

over the domain D, and we get 

fo f' f(p,e~,v)+ v3dv # d#f(a,v,#)K(a,p,v,~,#,v)=O (3.1) 
- - I  
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where # = cos t2, v = cos fl, and 

K(a, vp,~,v)=~]o&]o d~ d~, dOsin~G(a,v,p, to,~,~o,~,O,a,~,) 

The factor 1/27r in front of the last integral arises from an integration 
over the azimuthal angle O, f ( p , ~ , v )  being independent of it. 
Equation(3.1) shows that f ( p ,  to, v) is completely determined by the 
function f (a ,  to, v), ve ( -  1, 1), cot R+. For this last function we obtain an 
integral equation. Indeed, by making p - * a +  and by using the relation 
(1.2c) in Eq. (3.1), we find 

fo fo f (a ,  to, v) + u ~ du I~f(a, u, v) K(a, u, a, to, I~, v ) d# 
- 1  

= - f o  u3du # . # ( u , p ) . K ( a , u , a , e ) , # , v ) d ~  

-- 0(to, v) (3.2) 

which is satisfied by the distribution function f ( p ,  to, v) on the surface 
of the sphere S. The right-hand side of Eq. (3.2) is a known function 
depending on the boundary value ~o(u, #), for /~ > 0. After we know the 
solution of Eq. (3.2), the distribution function f (p ,  to, v) that solves the 
boundary value problem (1.1)-(1.1c) is given by the integral transform 
(3.1). Unfortunately, there is no hope to solve explicitly Eq. (3.2), its kernel 
being a very complicated function. 

We want to point out here that this is the first time that an integral 
equation for the distribution function of the steady-state spherically sym- 
metric Fokker  Planck equation has been obtained. All the previous 
approaches for solving the problem (I.I)-(1.2) were based on the moments 
problems, and various schemes of truncated expansions have been 
attempted. See ref. 10 and the references therein for a discussion of the 
shortcomings of these expansions. 

In most applications" ,1~ the interesting physical problem is the 
boundary value problem (l.l)-(1.2a), i.e., the solution of Eq. (1.1) that 
satisfies at 

r=a ,  f (a ,  v, #)=O, p~(0,  1), v e R +  

This means that all particles falling upon sphere are absorbed by it. 
In order to obtain a unique solution we have to impose also the condi- 

tion (1.2b), namely 

f ( r ,  v, I~) --* g(r, v, #) as r --* oo, in an L2-sense 

where g(r, v, It) is a diffusion solution. 
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A spherically symmetric diffusion solution of Eq. (l.1) is 

g(r, v, l~)= r l l - - 7  + v exp - 

The function 

h(r, v, p) = g(r, v, p) - f (r ,  v, l~) 

where f (r ,  v,#) is a solution of the problem (1.1)-(l.2a), is a solution of 
Eq. (1.1) and satisfies the bbundary conditions (BC) 

h(a ,v , l~)=g(a ,v , t~) -  a# v---T-+ exp - ~ -  , #~(0 ,1) ,  v ~ +  

and by construction h(r, v, #) --* 0 as r --* oo. 
We see that the function h(r, v, It) satisfies the BC (1.2c) and conse- 

quently h(a, v, #) can be obtained by solving the integral equation (3.2), 
where the function ~0(u,/~) entering the right-hand side is given by the 
above explicit expression. The solution h(r, v, I~) and as a consequence 
f (r ,  v, #), is obtained via the integral transform (3.1). 

Finally we want to point out that the integral operator (3.2) can be 
studied in detail, although we shall not pursue this here. The key point is 
the asymptotic relation (2.2), which allows an estimate of the fundamental 
solution G(r, v, p, to) as follows. 

Let A be a constant such that for t > A we have 

s 2 (r + V "Jr" 0.~ - -  0 )  2 

E(t, r, v, p, ~)  >~-~--t 4t 

We shall write G(r, v, p, ~)  in the form 

f A r , . , .  G(r, v, p, o~) = Oo fk(t, •) dt + (~(t, r, v, p, o~) dt 

and note that the first integral on the right-hand side can be written as 
A �9 (~(to, r, v, p, o~) dr, where 0 < to < A. 

As concerns the second integral we have 

r, v, p, ,o) at at 

A ~nP(( - -~2)  f :  e x p { - ( r  + v + t~  dt 
~< (203/2 

B exp( - (o2/2) 
- [ r + v + ~ - - p ] '  B-I=(27r)z/2A---"--~2A 
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Thus, 

... B exp( - co2/2) 
G(r, v, p, co) = ir + v + ~ "  Pl + smooth terms 

The behavior reflects itself into an explicit dependence of the kernel of 
the integral equation (3.2) and makes possible an almost complete analysis 
of the corresponding operator. 

4. CONCLUSION 

In this paper we have shown that the boundary value problems 
(1.1)-(1.2) are equivalent to an integral equation. In this way we have 
succeeded in taking exactly into account the boundary condition (l.2a), 
which caused much trouble when implementing it in numerical 
calculations. We hope to find an approximation scheme for solving the 
integral equation (3.2) and show that the approximation converges to the 
true solution. 

Our work also sugests that this method can be extended to other 
interesting transport equations, the sole proviso being the knowledge of the 
fundamental solution of the corresponding partial differential equation. In 
this way this paper suggests a new route for solving such boundary value 
problems, since by transforming them into Fredholm integral equations, 
the existence and uniqueness theory is considerably simplified. 
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